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Two Lagrangian-Eulerian vortex methods to simulate the motion of an interface between 
inviscid fluids of different densities are presented. The representation of the interface as a 
vortex sheet eliminates numerical diffusion, and by coupling the tracked interface with z 
stationary grid (using the well-known vortex-in-ceil method) the high cost associated with 
traditional vortex m&hods is reduced. These methods are applied to the Rayleigh-Taylor 
instability. For finite density ratios the appearance of rolled up vortices and a possibie 
singularity formation has limited simulations in the past. By providing proper regularization 
our methods ovcrcomc some of these difficulties. (T I’M Acndcmic Press. Inc. 

1. INTROD~JCTION 

One of the classic examples of hydrodynamic instability is the mixing of two 
fluids that takes place if a heavy fluid initially lies above a lighter one in a 
gravitational field. The first to investigate this problem was Lord Rayleigh [43], 
who late in the last century considered the linear stability problem for inviscid 
fluids with various stratification profiles, including sharply stratified fluids. In the 
early fifties 6.1. Taylor [Sl] renewed interest in this problem by pointing out that 
it is formally identical to the problem of an interface accelerated toward the heavy 
fluid. This observation made controlled laboratory experiments possible, and at 
Taylor’s suggestion D. J. Lewis [29] performed several such experiments, confirm- 
ing Taylor’s and Rayleigh’s theoretical predictions for the linear stage and shedding 
some light on the large amplitude evolution. Several investigators have since 
repeated Lewis’ experiments using devices ranging from rubber bands (Emmons, 
Chang, and Watson [IX]) to rocket motors (Read [742]) to produce rhe desired 
acceleration. 

The stability analysis of Rayleigh and Taylor has been extended to take into 
account other physical effects such as surface tension and viscosity (Bellman and 
Pennington [S], Chandrasekhar [ 13]), compressibility (Mitchner and Landshoff 
[36]), and weakly nonlinear amplitudes (e.g., Emmons cl al. [ 18]i. Although these 
analytical investigations have revealed several interesting properties, most have not 
addressed the large amplitude behavior of a single bubble, or the interactions of 
these bubbles at large amplitudes. For a single bubble of negligible density 
penetrating the heavy fluid the asymptotic shape at large amplitudes has keen 

253 
%X1-‘?391;88 83.06 

Copyright 6 1988 by Academic Press. Inc 
All rights of reproduction in cny form eservad. 



254 GRhAR TRYGGVASON 

analyzed by Birkhoff and Carter [ 111 and Garabedian [ 191. For discussions of 
recent results see Garabedian [20]. Experimentally, the large amplitude regime is 
(relatively) easily reached and is found to consist of many competing and 
interacting waves of different amplitudes and wavelengths. The dominant length 
scale at large amplitudes is often considerably larger than at small (linear) 
amplitudes, and for large density differences the final stage in experiments often 
consists of a single bubble, whose size is determined by the experimental apparatus. 
This increase in the mean length scale is well known from some other nonlinear 
systems such as shear layers (Aref and Siggia [3]) and interfaces in a Hele--Shaw 
cell (Tryggvason and Aref [SS, 561) and is, for the most part, a mechanism outside 
the domain of analytical investigation. The shortcomings of the above-mentioned 
analytical investigations are shared by the various models that have been advanced 
for the Rayleigh-Taylor instability. Most consider only the growth of a single 
wavelength initial perturbation (e.g., the celebrated Fermi model mentioned by 
Birkhoff [lo]), and those that address the large amplitude mixing are usually not 
founded on sufficiently strong physical arguments to be expected to give 
trustworthy results a priori. See, for example, the model of Sharp and Wheeler and 
Sharp’s [SO] discussion of the model. Most such models deal with the, case where 
the lighter fluid has negligible density. For a model of the small density case see 
Aref and Tryggvason [4]. 

Considering the difficulties in the analytical treatment of the Rayleigh-Taylor 
instability, it is not surprising that it has been the subject of many numerical 
studies. The earliest numerical simulations are probably those described by Birkhoff 
[lo], but the first successful studies are attributed to Harlow and Welch [22] and 
Daly [16] who used the marker-and-cell method. Daly studied the evolution of a 
single wavelength initial (velocity) disturbance for various density ratios and 
established the now well-known behavior of a single wave at large amplitudes. For 
small density differences the interface rolls up into two counter-rotating vortices. 
For larger density differences these vortices are smaller and move toward the light 
fluid. For sufficiently large density differences no roll-up is observed and the heavy 
fluid falls in smooth, pointed spikes into the light fluid, while the light fluid forms 
big rounded bubbles that propagate into the heavy fluid. Daly’s “classic” computer 
generated pictures are reproduced by Lugt [31]. Later numerical studies have tried 
to achieve higher accuracy and larger amplitudes. Although considerable progress 
has been made, generally these studies have only reached amplitudes of once or 
twice the perturbation wavelength and have been confined to relatively simple 
initial conditions. Only for one case, an inviscid fluid falling into a vacuum 
(sometimes referred to as the single fluid case), has an accurate solution been 
obtained. The results were obtained independently by Baker, Meiron, and Orszag 
[6] using a vortex method and by Menikoff and Zemach [35] using a conformal 
mapping technique. Although Baker et nl. where able to follow the evolution of an 
interface perturbed by a single wave for as long as they wished, more general initial 
conditions (many waves) led to problems that ultimately brought the computations 
to a halt (Orszag; private communication, 1984). For the two fluid case when vor- 
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tices form on the side of the spike, most methods appear to fail on the roll-up. 
Baker et al. report only limited success, and other methods based on tracking the 
interface appear to do no better. For recent studies see, e.g., Glimm, ryan. 
Menikoff, and Sharp [21]; Pullin [40]; and Youngs [59]. Some succes been 
achieved by using diffusive codes that do not maintain the sharp interface at all 
times (see, e.g., Youngs [59]), but the accuracy obtained and the relevance to the 
sharply stratified model most commonly studied is not clear. 

Although the Rayleigh--Taylor instability is rarely observed in its “purest” form, 
it plays an important role in various natural and technological processes. Often the 
motion is modified by additional processes such as phase changes, and the initial 
setup is frequently such that “instability” is a somewhat misleading description Any 
motion of one fluid in another of different density is, of course, governed by essen- 
tially the same mechanism as the one governing the nonlinear Rayleigh-Taylor 
instability even if there is no stable state initially. The formation of bubbles from a 
vapor film beneath a liquid in film boiling is a classic example of relatively “pure” 
Rayleigh-Taylor instability. In technological fields such diverse applications as the 
formation of droplets by the vibration of a liquid with a free surface to the break-up 
of accelerated thin-shell laser fusion targets [ 17, 57) may be mentioned. Several 
geological and physical phenomena are also believed to be essentially due to 
Rayleigh-Taylor instability [41]. 

In addition to its intrinsic importance the Reyleigh-Taylor problem has become 
a popular test case for numerical methods intended to study multiphase or mul- 
timaterial problems [21, 24, 581. For further discussion of the Rayleigh--Taylor 
instability the reader is referred to the review by Sharp [5C], 

In this paper the evolution of the Rayleigh-Taylor instability will be studied by 
approximating the fluids as inviscid, incompressible, and each of constant density. 
The interfacial surface tension is taken to vanish. Although this model is possibiy- 
the simplest one capable of capturing the physics involved, and hence the one most 
commonly studied, it was already discovered by Birkhoff [IO] that the complete 
neglect of stabilizing mechanisms, such as viscosity or surface tension or both, leads 
to certain difficulties. An indication of these difficulties is already evident in the 
linearized stability analysis, which gives the growth rate of an infinitely small 
unstable wave as being proportional to the square root of its wavenum 
nonphysical behavior (that infinitely short waves grow infinitely fast) led 
to speculate that the initial-value problem might be ill-posed, and that an initial 
analytic interface might not remain analytic at all times. Ill-posedness and unboun- 
ded growth rates may be only a necessary condition for singularity formation which 
must be due to nonlinear interactions that excite smaller and smaller length scales, 
IJnbounded growth rates can, however, lead to numerical problems, even in the 
linear stage, since a small error can amplify rapidly. (Nonlinear interactions can 
also stabilize small waves, for example, the single fluid Rayleigh-Taylor i~stab~l~~y~ 
which does not form rolled-up vortices, is believed not to form a singularity [6].) 

For regular vortex sheets (with no density difference) there exist fairly strong 
numerical and analytical evidence (Meiron, Baker, and Orszag [3J]; Moore [38]; 
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Krasny [26]; Higdon and Pozrikidis [23]) that after a finite time the vortex sheet 
forms a curvature singularity that becomes the center of vigorous roll-up. The 
singularity seems to be due to the strong advection of vorticity into the point where 
the singularity forms. Just before the singularity forms, the vortex sheet strength has 
a sharp spike at that point. (This is true only for the initial motion. At large 
amplitudes no concentration of the vorticity is believed to take place, see Saffman 
and Baker [46]). When the vortex sheet is modelled as a row of point vortices, the 
model generally resists efforts to reliably follow the roll-up numerically beyond the 
time singularity forms. However, it is well known that the physical system being 
modelled by a vortex sheet (and which differ from the model by having some 
viscous effects and finite thickness) can typically exhibit roll-up, and the rolled up 
region is quite regular long after the numerical simulations have broken down. 

It seems to be the general belief that even though the vortex sheet model breaks 
down after a finite time, a “weak” solution still exists, relevant to the physical 
system modelled, which may be obtained by a proper regularization. The situation 
may be somewhat analogous to shocks in compressible, inviscid fluids, which are 
captured by the proper artificial viscosity. Various regularizations have been tried. 
A common one is to replace the innermost part of the vortex by a single point vor- 
tex and to move all vortices that come within a certain distance of this center vortex 
into it (see, e.g., Moore [37]). Another approach is to replace the singular point 
vortices by smooth vortex blobs (see, e.g., Chorin and Bernard [ 141). In the case of 
stratified flow, where it is necessary to maintain a continuous interface, it appears 
that this second method has certain advantages. Recently, this desingularization has 
been used to study the behavior of the inner rolled-up spiral on a vortex sheet. 
Krasny [27] has studied the large amplitude Kelvin-Helmholtz instability, and 
Anderson [l] has studied the late time deformation of a rising cylinder of slightly 
buoyant fluid (where the Boussinesq approximation is applicable). Our interest in 
this second regularization is due to the observation that the vortex-in-cell method, 
which is used in this study, has properties very similar to the vortex blob methods 
(see Tryggvason [54]). For additional discussions of regularization in interface 
simulations, see [60]. 

The rest of the paper is laid out as follows. In Section 2 the governing equations 
are presented, and two grid based vortex methods for simulations of sharply 
stratified flow are presented. Computational examples are presented in Section 3. 
The methods are compared, and the reason why our methods successfully deal with 
the difficulties that limited simulations in the past are discussed. Section 4 contains 
concluding comments and examples of more demanding simulations. 

Short accounts of the methods and preliminary results were presented at the 
American Physical Society, Division of Fluid Dynamics annual meeting in 
Providence, RI., Nov. 18-20, 1984, and in Tucson, AZ, Nov. 22-26, 1985, and at 
the SIAM spring meeting in Pittsburgh, PA, June 24-26, 1985. Some of this 
material is available in the thesis by Tryggvason [53]. 
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2. GOVERNING EQUATIONS AND NWERICAL METHOD 

If the interface between two inviscid fluids of different densities is not perpen- 
dicular to the pressure gradient, vorticity will be generated as prescribed by 
Bjerknes’ generalization of Kelvin’s circulation theorem. In the interior of each fluid 
the original theorem of Kelvin holds. Hence, the vorticity must be confined to the 
interface at all times and can therefore be regarded as a generalized vortex sheet. 
The formulation of the problem in terms of a vortex sheet greatly reduces the com- 
putational effort, since now it is necessary only to follow the motion and strength of 
the sheet itself. No interior degrees of freedom need to be considered. Given the 
position and strength of the vortex sheet, its velocity is given by Birkhoffs integral 
formula [ lOI9 

4X(X(& tj-x(s’, t)) 
uts7 1)=k p J Ix(s, t)-xX(,?‘, t)y j’(s’. rj ds’, 

where the principal-value integral is taken along the sheet. Here U is the velocity of 
the vortex sheet, x its position, y the vortex sheet strength, and s an archlength 
coordinate. Once the velocity is found, a new position can be determined by 
integrating 

dx/dt = U. (2) 

Usually the vortex sheet is modelled by a row of point vortices and Birkhoff+s 
integral is approximated by a summation. Since it is necessary to sum over ail the 
vortices in order to find the velocity of each vortex, O(N’) operations are reeded 
per time step, where N is the number of vortices. Obviously for large N finding the 
velocities becomes quite demanding on computational resources. In the present 
study a different approach is taken. Instead of using Birkhoff’s integral ( 1) to find 
the velocities of the (singular) vortex sheet, we use the fact that a stream function @ 
corresponding to the velocity field u(x, ~1) induced by the vortex sheet satisfies 

where 

V$ = -w; u=vx$lR. 

CO(X) = J ~(x(s, t) - x j Y(S) cis 

is the vorticity and here 6(x) is a two-dimensional delta function. When the sheet is 
approximated by a row of point vortices, i= 1, ~..) N of circulation fi, the vorticity 
is approximated as 

o(x)=C G(x,(t)-x)f;, (5) 

where 
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and ds; is the length of the sheet modelled by vortex i, and xi(r) is its position. The 
benefits of using (3) directly, instead of its formal solution (l), arise from the fact 
that for a regular domain with simple boundary conditions the Poisson equation 
(3 j can be solved quite efficiently. Fast Poisson equation solvers require 
O(M2 log M) operations for the inversion on a M x M grid, and for highly contor- 
ted interfaces we may assume approximately one vortex per grid square, so the 
operations needed to find the velocities are O(N log N); considerably fewer than the 
O(N’) required by a direct summation method. Fast Poisson solvers generally 
require fairly simple boundary conditions. In the calculations reported here the 
computational domain is a rectangular box with periodic boundaries in the 
horizontal (x) direction and rigid top and bottom. 

Since the source term in Eq. (3) is a (singular) line source whose position will not 
(in general) coincide with the grid lines of a regular grid, some preprocessing is 
required before a standard Poisson equation solver can be invoked. One way of 
doing this is to generate an irregular finite element grid such that the interface (the 
line source) always follows element boundaries. Another method is to generate a 
curvilinear, finite difference grid such that the interface coincides with a grid line. 
Both of these methods require somewhat expensive grid construction. in addition to 
the more serious consequence that the resulting system of equations is not as 
efficiently solvable as when a regular grid is used. In our approach, we keep a fixed 
regular grid and use a vortex-in-cell (VIC) algorithm similar to the one described 
more than a decade ago by Christiansen [15]. In the original VIC method each 
point vortex making up the vortex sheet interface is split into four pieces. and each 
piece is assigned to the nearest grid point by the so-called area-weighting rule. 
When all the point vortices have been assigned to grid points, the singular vortex 
sheet has been replaced by a smoother vorticity distribution that is used by the 
Poisson solver. Although at each time step a smooth version of the vorticity is used 
to find the velocities, the vortex sheet interface is always well defined and does not 
diffuse. The original method, smoothing the vorticity only to the nearest four grid 
points, produces some anisotropy on the smallest scales. This is a well-understood 
problem and can be corrected (in those cases where such small-scale anisotropy 
may cause difficulties) by creating a smoother, more isotropic grid vorticity from 
the singular point vortex field. For early work on smooth, or “quiet,” VIC methods 
see, e.g., Hackney, Goel, and Eastwood [25]; Buneman [12]; and Leonard [28]. 
For recent work see the paper by Anderson [2], which extends ideas presented by 
Mayo [32]. In this paper we have used both the original four-point area-weigthing 
rule and a smoother interpolation function suggested by Peskin [39] in a slightly 
different context. Since the procedure is well described by Peskin [39], and a short 
discussion is given by Tryggvason [54], we will not describe it further here. For a 
description of the original method the reader is referred to Christiansen’s paper 
[15], Baker [S], Aref and Siggia [3], and Leonard [28]. 

In the original VIC method the circulation of each point vortex is assumed to 
remain constant, since the method was designed to simulate the motion of an 
inviscid, constant-density fluid. When the point vortices are used to represent a 
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generalized vortex sheet interface separating different fluids, the vorticity of each 
material segment changes with time and an auxiliary equation for the evolution o$’ 
the vortex sheet strength must be provided. The extension of the WC method tc 
handle these cases was first considered by Meng and Thomson [34] for inviscid 
fluids and for flow in a Hele-Shaw cell. However, they only considered the case of 
weak stratification and presented a rather limited set of examples of applications. 
Tryggvason and Aref [SS, 561 extended the method to arbitrary stratification for 
flow of two fluids in a Hele-Shaw cell. Tryggvason [52] used the version for 
weakly stratified inviscid flow to study the initial motion of gravity currents, The 
extensions to arbitrary stratification are discussed below. 

Consider an interface between inviscid, incompressible. irrational fluids. The Dow 
of each fluid is governed by Euler’s equation 

Pia;= -VP,-P;gj, i= 1, 2. (7) 

Here 
? ai=*+ui.va;, dt I’Si 

is the acceleration of a material point, pi is the density of fluid i, pi is the pressure in 
fluid i, g is the gravitational acceleration, and j is a unit vector directed upward. We 
will adopt the convention that 1 (2) refers to the fluid initially at the bottom (top). 
See Fig. 1. To obtain an equation for the vortex sheet strength 

?/=(u,-u~)G 

we subtract the tangential component of (7) across the interface to get 

tsi 

Light fluld p, 

FIG. 1. Notation. The heavy fluid (2) is initially above the light Iluid ( 2 i. Gravity acts dowtlward. 
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The velocity of the interface is defined to be the average of the velocities on either 
side: 

U=$(u,+u,). (11) 

Using the definition for y and U we have 

u,=u+:l’s^. _ - u* = u - fyi (12) 

Substituting this into the definition for ai, the convective acceleration, we obtain 

dUj 1 dUi a,=-+-)I--, 
dt - 2 8s 

where the + ( - ) sign is for i = 1 (2), and 

dui hi 
-&=,+u.vuj 

(13) 

(14) 

is the rate of change in ui following an interface point. Substituting the above results 
into (10) we obtain the equation governing the evolution of the vortex sheet 
strength 1’: 

dy XJ 2 
z+y as..f=2Aa.5+2Agj..i-p 8Yl -P2) 

Pl+P2 8s . 

Here .4 is the Atwood ratio 

(15) 

and 

a=+(a,+a,) (17) 

is the average of the acceleration above and below the interface. Notice the dif- 
ference between a and the acceleration of an interface point dU/dt. The relation 
between these two (the tangential components) is easily shown to be 

” dL ” 1 dy’ 
a.s=dt.s+8x. (18) 

The difference between the pressures on either side vanishes for negligible surface 
tension or can be expressed by Laplace’s equation p1 -pz = a( l/R), where 0 is the 
surface tension coeffkient and R is the radius of curvature. Equation (15) can 
therefore be written in terms of interface quantities only. 
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Equation (15) and various other slightly different forms have been derived and 
rederived by many investigators. See, for example, Zaroodny and Greenberg [62]; 
Zalosh [61] (and the correction by Rottman and Olfe [45]); Baker, Meiron, and 
Orszag [6, 71; and Glimm et al [21].’ 

In the actual computation it is convenient to work in nondimensional variables, 
so we now proceed to derive the nondimensional form of the equation govermng 
the vortex sheet strength generation, Eq. (15). The nondimensional form also allows 
us to make an important observation about small stratification. The width (Wj of 
the computational box will be taken as the length scale. For interfaces perturbed by 
a single wave. or that contain a length scale set by a nonzero surface tension, the 
wavelength of the single wave or the surface tension length may be the more 
relevant length. However, we choose IV for two reasons. For interfaces perturbed 
by many different waves, R’ may be the only uniquely defined length scale, and 
second, it is convenient to work with a computational box of unit’width. For the 
simulation of one wave the wavelength and the box width usually coincide, A time 
scale is now given by \‘: v/Ag and the nondimensional variables (denoted by a 
tilde) are then defined as 

Substituting these into Eq. (15), dividing by a common constant, and dropping the 
tilde we get 

where 

B= 
CJ 

MP, + P2) Iv2 

is a dimensionless surface tension coefficient (actually an inverse “Bond number”), 
and we have written j. s^ = ~~/L?Y. In this form it is easily seen that the terms 
representing the average acceleration become less and less important as A -+ 0. For 
very small density differences we can neglect the term multiplied by A. This 
corresponds to making the Boussinesq approximation where the density is con- 
sidered constant except when multiplying g. (Formally, this is the limit g + SC. 
A -+ 0, but Ag is finite.) It is actually a trivial exercise to derive this limiting case by 
first making the Boussinesq approximation (see, i.e., Tryggvason [52] )~ The 
simplification achieved by the Boussinesq approximation is considerable, and in 
this limit the two numerical methods described below become identical. 

1 I am grateful to Professor C. Dalton at the University of Houston for pointing out some of these 
references to me. 
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Since the interface is parameterized by material points in the simulations, it is 
convenient to write the derivatives in (20) in terms of a material marker M rather 
than arclength s. Now 

(22) 

since 

The last term in (22) is 

as is easily found by using the definition of arclength. Hence (20) can be rewritten 
as 

g3=2‘4 (3d+2~-2833. (23) 

When the :interface is modeled as a row of point vortices, each point carries the 
circulation ri equal to the vortex sheet strength integrated over a small material 
line around the point. The circulation of a material line between points denoted by 
CI- and a+ is 

where s is the arclength. Changing variables from s to CI we have 

I‘= y(z, t) $ da. 

The time derivative of r is 

(24) 

(251 

(26) 

since a+ and c(- do not depend on time. Here the partial differentiation means that 
c( is kept constant. 

Equation (23), or (26), is the evolution equation for the circulation of each point 
vortex needed to supplement Eqs. (2) and (3). However, the system of equations is 
not closed yet, since a .5 has to be found. The most straightforward way to do so is 
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to use the fact that the pressure is a potential for pa and an equation for p is easily 
found by taking the divergence of Euler’s equation This is, for example, the method 
used by Glimm et al, [Zl]. For our purposes this has some drawbacks. The first 
one is that the pressure equation is a nonseparable elliptic equation, whereas we 
would prefer a simple Poisson equation so that a fast Poisson solver may be used, 
The second drawback is that since the pressure is a potential for pa it is necessary 
to know on which side of the interface we are to find a. Since our intention is :o 
avoid any complicated and expensive grid constructions, it is essential not to have 
to make distinctions between the two fluids, except for the iocation of the raterface. 
Fortunately, both of these difficulties can be overcome in a relatively simple way, 
although at the cost of having to solve several Poisson’s equations in an iterative 
procedure. Two methods have been developed to treat this term, both of which 
depend on some iterative solution of the Poisson equation, The distinction between 
the two methods is dependent on Eq. (18). One method uses the decomposition on 
the right-hand side of (lg), whereas the other method works with a somewhat 
different decomposition of a. We describe this second method, which we refer to as 
the acceleration potential (AP) method, first. 

Using the fact that any vector field can be written as the sum of a divergence-free 
part and a curl-free field, we introduce two potentials, 8 and 4 (see, e.g., Serrin 
[47] ) such that 

(37) 

Now a denotes the acceleration field in the whole computational domain, and not 
only on the interface. For fluid of constant density, p,,, it is of course obvious that 
d, = constant. and 

To find equations for 8 and C$ the definition of a is used. Taking the divergence of 
Eq. (27) we obtain 

where u = (u, rli and we have used the fact that V. u = 0. TakFng the curl of Eq. i 27 ) 
yields 
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Although, in general, a is discontinuous across the interface, we treat it in the same 
way as the velocities, that is, we smooth the source terms for its potentials onto the 
grid and hence obtain a smooth approximation for a. The equation for 4 has 
exactly the same form as the equation for the stream function $, therefore it is 
possible to use the VIC program directly. (The boundary conditions are also the 
same as will be shown shortly.) Since the source terms (Eq. 15) contain the 
acceleration a, an iterative procedure is necessary. The technique to solve non- 
separable elliptic equations by iterative application of a fast Poisson solver, 
described above, has been discussed in more detail by Bernhardt and Brackbill [9]. 

The source term for the 0 equation is easily shown to consist of a part that is 
nonzero within each fluid but discontinuous across the interface, and a line source 
at the interface (Tryggvason [53], Glimm et al. [21]). The line source is a con- 
sequence of the discontinuous velocity field and, since the replacement of the 
singular vortex sheet by a smooth vorticity field gives a smooth and continuous 
velocity field, the line source should not be added explicitly in our treatment. The 
source term can therefore be obtained in a way consistent with previous 
approximations by numerical differentiation of the velocity field in the whole com- 
putational domain. This obviously leads to considerable simplification in jmplemen- 
tation and allows the computations to go much faster. The differentiation, though, 
has to be done somewhat carefully. As shown below, 8 has Neumann boundary 
conditions (equal to zero) at the rigid boundaries. The integral of the source term 
over the domain must therefore vanish, and it is important that the discretization 
preserves this property. A straightforward discretization of (29) using standard 
three-point central differences for the stream function does not. However, using cen- 
tral differences on the velocity field does have this conservation property, but since 
the velocity is found by central differences from the stream function, the result is a 
scheme that involves the stream function from five grid points in each direction. It 
is possible to use the three-point formula and enforce conservation by adding or 
subtracting a small correction from the value at each grid point. For a discussion of 
the problem, and this procedure, see Roache [44]. Although this more compact 
formula is preferable, since it corresponds to smaller blobs, it was found to be sus- 
ceptible to instabilities at large amplitudes, particularly when the original VIC 
method was used. We have therefore used the following conservative differencing in 
the runs presented here: 

*i+2.j+*ip,,jp21//i,j Il/i,j+2+tiij-2-‘@i.j 

(s$-(s)‘)=(( 4Ax2 )( 44~;’ ) 

We now derive the relevant boundary conditions for 8 and 4. The computational 
domain is a box with a rigid top and bottom, y = 0, L, and is periodic in the 
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~-direction. Thus, boundary conditions are that the normal velocity, c, vanishes at 
the top and bottom boundaries. The normal acceleration 

must therefore also vanish. For the acceleration potentials B and $ this means 

;+z=o. on 1’ = 0, I... 
J 

(33) 

The decomposition formula for the acceleration leaves a certain freedom in the 
choice of 19 and d. We want to show that without a loss of generality we can take 
~@/c?J, = 0 and 4 = 0 as boundary conditions on y = 0, L. From the definition of N 
and 4 (27), it is obvious that we can add 8’ to @ and $’ to 3 without affecting the 
physical accelerations if 8’ and 4’ satisfy 

vi7 = v x (d’ff) 134) 

or 

That is, 8’ and 4’ must satisfy the Cauchy-Riemann equations. Assume now that 
S0,‘2;~ # 0 and d # 0 on J’ = 0, L. Then we can find 8’ and 4’ satisfying 

,y = 0; q$‘= -q$ on I’=o, k. (37) 

Making the gauge transformation 

we obtain potentials (e”, 4”) which give the same physical acceleration as (0, $) and 
satisfy the stated boundary conditions. 

In the second method (referred to as the iterative time-step (ITS) method) we 
still use the VIC method to find the velocities efficiently from the vorticity, but 
instead of using the smoothed vorticity (and velocity) field to calculate the grid 
acceleration for ( 15), we work with the decomposition of the mean acceleration into 
the acceleration of an interface point and a convective term involving on!y the 
vortex sheet strengths. Eq. (18). The term containing y is easily found at each time 
step, but &J/cir is found as follows. First the interface is advanced and the vortex 
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sheet strength updated using dU/dt from the last time step as an approximation 
Then the velocities at the new position are found, using the new approximate value 
of 1’ (or r). These velocities are then used to calculate dU/dl (by finite differencing) 
for the last position and the time-step is repeated. This iteration is repeated until 
satisfactory convergence is achieved. Since it is somewhat difficult to implement this 
second method using the time-stepping package for the first method (STEP of 
Shampine and Gordon [49]), a second-order predictor-corrector was used for this 
method. 

The Acceleration Potential Method 

1 Beginning of time step n 1 

I Approximate : 

from dry/at by the VIC method 

Iterate if needed 

FIG. 2. Flowchart for the acceleration potential (AP) method. Here ati = V x (&). 
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The Iterative Time Step Method 

367 

End of Time step 

FIG. 3. Flowchart for iterative time step (ITS) method 

To make the steps in each method somewhat clearer, a flowchart for each 
method is given in Figs. 2 and 3. The method based on the decomposition of the 
acceleration into an divergence-free part and curl-free part (the AP method) is 
shown in Fig. 2, and the method based on the iterated time stepping (the ITS 
method) is shown in Fig. 3.2 For reasons of efficiency the actual code is slightly 
different from the flowcharts, but the flowcharts represent workable algorithms. 

As in previous work [55, 561 it was necessary to occasionally redistribute the 
interface points. Since the cost of each run depends only weakIy on the number of 
interface points, it was found convenient to use a relatively large number of points 

’ The presentation of the methods by flowcharts was suggested to me by Professor N. J. Zabusk!. 
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and keep the redistributing algorithm rather primitive. In general the results were 
insensitive to the exact value of the redistributing parameters, as well as the number 
of interface points used. The main change to the redistributing process described in 
[55] was the addition of a point insertion routine, and that redistribution (and 
point addition) was now done automatically whenever the point distribution 
required (instead of every fixed number of time steps). For simulations employing 
direct summation methods, it is essential to keep the number of interface points as 
small as possible, and the redistribution must be done much more carefully, for 
discussions see, e.g., [60]. 

For small density differences the interface is unstable to Kelvin-Helmholtz shear 
instability and for fine grids the interface can develop small-scale rolled-up vortices 
from disturbances induced by the grid (see, e.g., Baker [j]). By smoothing the 
interface slightly these small disturbances can be dissipated. For calculations with 
the original (four-point) VIC method such smoothing was necessary for the first 
time steps in finely resolved runs. After a concentrated vortex had formed, the 
stretching of the interface was apparently sufficient to stabilize the grid generated 
disturbances and the smoothing was discontinued. For the coarser grids the 
wavenumber of the grid disturbances was sufficiently low (and therefore also their 
growth rate) so that when their growth was stopped by interface stretching, the dis- 
turbance amplitude was still small. However, it is interesting to note, that when no 
smoothing is applied on tine grids and many small vortices appear, these vortices 
usually merge into one big vortex and (except for the more complicated shape of 
the rolled-up region) the interface evolves similarly to when smoothing is applied 
and only one regular vortex appears. For simulations using the more isotropic VIC 
method, much less, and in many cases no, smoothing was needed. 

3. NUMERICAL RESULTS AND DISCUSSION 

In this section the performance of the methods is discussed. The only “exact” 
solution available is the Baker, Meiron, and Orszag [6] and Menikoff and Zemach 
[35] solution for the single fluid case, so our main validation test for the two-fluid 
case is a study of the solution under grid refinement. If not stated otherwise the 
results presented were obtained using the modified VIC method. 

The evolution of a single wave disturbance where the heavy fluid is three times as 
dense as the lighter fluid (-4 = 0.5 j as calculated by the acceleration potential (AI’) 
method is shown in Fig. 4. As expected, the heavy fluid falls into the lighter one and 
rolls up into two counter-rotating vortices with a slight downward velocity. The 
grid is 32 by 128 square meshes. In Fig. 5 the large amplitude configuration is com- 
pared for runs on different grids. Fig. 5a uses a 16 by 32 grid; 5b, a 32 by 64 grid 
(same resolution as in Fig. 4, but shorter computational box); and 5c, a 64 by 128 
grid. The nondimensional time is 1.75 for all frames. The main differences between 
the figures is in the vortex. The vortices on the finest grid have a tightly wound 
spiral, where as on the coarsest grid there is very little roll-up. Outside the vortex 
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FIG. 4. The evolution of a single wavelength initial condition as calculated by the AC method using 
a modified WC method. The heavy fluid is three times as dense as the lighter ftuid. 4 = 0.5. The grid is 
32 by 128 meshes. and the initial amplitude was 10 0% of the wavelength. The interface is shown at times: 
0.0, 1.0, 1.5, 1.75, 2.0. 2.25, and 2.5. 

the interfaces differ less, although the position of the vortices and the amplitude of 
the spike (we use the terminology of spike and bubble, although the distinction is 
not as clear as in the single fluid case) show a weak dependence on resolution (see 
Fig. 7). This nonuniform convergence, rapid outside the vortex, but slow (or 
possibly nonexisting) within the vortex, has recentiy been observed in studies of 
vortex sheet roll-up by the so-called vortex blob methods. For vortex sheets 
separating fluids of slightly different densities (Anderson [ I]), and for vortex sheets 
in a constant density fluid (Krasny [27] ), roll-up is a strong function of the size of 
the vortex blob employed, while outside the roll-up region the interface con- 

a 

FIG. 5. The large amplitude stage at time 1.75 for the same densities as in Fig. 4, but ditTerent 
resolutions. The computational domain used here is shorter than in Fig. 3: (a) 16 by 32 grid. t to) 32 by 
64 grid (same resolution as in Fig. 4j; and (c) 64 by 123 grid. 4s in Fig. 4 the -AC method was used for 
these calculations. 
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figuration is only slightly affected by the blob size. In the VIC method the interface 
vorticity is distributed to the nearest grid points. thus, in effect replacing the 
singular interface vortices by vortex blobs. The size of the resulting blob obviously 
depends on the mesh size, so it comes as no surprise that relining the grid has the 
same effect as reducing the blob size. The similarity between the WC method and 
the vortex blob method for the situation considered by Krasny [27] is discussed by 
Tryggvason [54]. The lack of convergence is believed to be due to the formation of 
a singularity on the vortex sheet at the center of the roll-up. Numerical and 
asymptotic studies of this singularity formation for vortex sheets without any 
stratification include those of Moore [38]; Meiron, Baker, and Orszag [33]; and 
Krasny [26]. For real fluids the singularity is, of course, completely removed by 
viscosity, but it is presumably important to explore fully the nature of this 
phenomenon both for an improved understanding of the limitations of the vortex 
sheet model and for the possible generation of “weak” solutions of relevance to real 
physical flows. 

In Fig. 6a the amplitude of the wave for the runs in Fig. 5 is plotted versus time. 
The bubble amplitude is indistinguishable between the two better resolved runs, 
indicating a fully converged solution. The downward motion of the spike is 
somewhat more resolution dependent, although the difference between the better 
resolved runs is less than between the coarser runs, indicating a convergence under 
grid refinement. Figure 6b shows the velocity versus time. Again, the bubble 
velocity is fully converged in the better resolved runs, but the spike velocity less so. 
The waves on the velocity graph indicate that although grid effects have been 
reduced greatly by the use of a modified WC method, they have not been com- 
pletely eliminated. The bubble has reached a terminal velocity of about 0.265 in 
nondimensional units. The strong reduction in the spike velocity at the end of the 
run is due to the presence of the lower no-through flow boundaries. (The box boun- 
daries are at 0.0 and 2.0 in Fig. 6a.) In order to estimate the asymptotic behavior of 
the spike, a longer box is required. 

The resolution dependency of the downward motion of the spike increases with 
the density difference. The reason is that the term a .5, which is responsible for the 
advection of vortex sheet strength downward and hence any departure from sym- 
metry, is calculated on the grid and not on the interface itself, as when the decom- 
position (Eq. (18)) is used. For large density differences this term is very significant, 
and it is essential that it is well resolved. The difficulty in doing so is the prime 
reason that this method is limited to low density differences. The poorly resolved 
a .d term will not advect the vorticity sufficiently rapidly toward the spike, hence 
the vortices will form earlier and closer to the center line than they should. In prin- 
ciple, very high resolution could be used, but when this was tried for the single fluid 
case (A = l.O), numerical instabilities in the form of high wavenumber disturbances 
along the side of the spike appeared. These instabilities do not appear in the ITS 
method and must therefore be associated with the treatment of the a .s^ term. They 
are also not related to the Kelvin-Helmholtz instability sometimes encountered for 
small density differences, since this problem occurs only for large density differences 
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where the interface is stable against Kelvin-Helmholtz instability. The exact cause 
of this instability has not been determined. High wavenumber instability for 
the single fluid case has been encountered in several simulations using direct 
summation methods, see, e.g., [7, 30,401. 

In the second method described in Section 2. the iterative time step (ITS) 
method, the vorticity convection term a .s^ is not resolved on the grid, but rather on 
the interface itself (using Eq. (18)). Therefore, it is to be expected that this method 
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Time 

Time 

FIG. 6. (a) Amplitude versus time for the three runs in Fig. 5: (a) 16 by 32 grid: (b) 32 by 64 grid: 
and (cl 64 by 128 grid. (b) Velocity versus time for the three runs in Fig. 5: (a) 16 by 32 grid; (b) 32 bk 
64 grid; and (c) 64 by 128 grid. The spike velocity is reduced sharply at the end of the cahxlations due 
to the presence of the lower boundaries. 
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FIG. 7. The single fluid case (A = 1.0). Calculation is by the ITS method. The grid is 64 by 256 mesh 
and the initial amplitude was 10 % of the wave length. The interface is shown at times: 0.0, 1.0. 1.5, 1.75, 
2.0. and 2.25. 

performs better when the density difference is large. This is indeed the case. Figure 7 
shows the evolution of a single wave disturbance for A = 1.0. The grid is 64 by 256 
square meshes. The heavy fluid falls down forming a narrow “spike,” while the 
lighter fiuid rises upward in a big “bubble.” These results compare rather well with 
those of Baker, Meiron. and Orszag [6] and Menikoff and Zemach [35], except 
that the tip of the spike should be sharper. The pendant drop at the tip of the spike 
is a numerical effect and is more pronounced for coarser resolutions. In Fig. 8 the 
large amplitude stage is compared for three different resolutions. The frames corre- 
spond to the same nondimensional times, t = 2.0. Except for the spike, the interface 
configurations differ little, particularly for the two finer resolutions. Since the spike, 
gets thinner as it falls, it will always eventually become poorly resolved. Naturally, 
this happens first on the coarse grids. Insufficient resolution causes the spike to 

FIG. 8. Thz large amplitude stage for the single fluid case and three resotutions at time equal to 2.0. 
Calculations are by the ITS method: (aj 16 by 64 grid; (b) 32 by 128 grid; and (c) 64 by 256 grid (same 
as in Fig. 7). 
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terminate in a drop that falls considerably slower than a better resolved spike. In 
Fig. 9a the amplitudes of both the spike and the bubble versus time are compared 
for these three resolutions, as well as with the “exact” solution of Baker, Meiron, 
and Orszag [6]. The bubble amplitude is well reproduced, even on the coarse grid, 
but the spike appears to need considerable resolution in order to come close to the 
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FIG. 9. (a) The amplitude versus time for the runs in Fig. S, and the “exact solution” of Baker. 
Meiron: and Orszag [6]: (a) 16 by 64, (bj 32 by 128, and (c) 64 by 256. Open circles: “exact solution.” 
(b) The velocity versus time for the runs in Fig. 8. The asymptotic velocity of :he bubble predicted in [61 
is marked on the vertical axis. The straight line is of slope 1 which is the asymptotic acceleration of the 
spike predicted in [6]. 
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“exact” solution. However, the inaccurate representation of the spike does not seem 
to cause any significant distortion in the rest of the solution. 

The reason the spike falls much slower on the coarse grid can be associated with 
the distribution of the interface vorticity onto the grid. The spike has a large vortex 
sheet strength of opposite sign on the sides and therefore may be considered as 
something like a dipole. When this vorticity of both signs is distributed on a coarse 
grid, cancellation occurs and the effective dipole strength, and hence the velocity, is 
reduced. The velocity of the bubble and the spike for the same runs is plotted in 
Fig. 9. The estimate for the terminal velocity of a bubble given by Baker, Meiron, 
and Orszag [6] is marked on the axis, and the inclined line represents the uniform 
acceleration of the spike predicted in the same reference. Although the spike falls 
short of reaching this acceleration in our simulations, it is noteworthy that apart 
from the actual numerical values, the behavior is as observed in [6, 351. The spike 
eventually falls with constant acceleration, but during the initial evolution the 
acceleration exceeds this asymptotic value. As for the lower density ratios the 
graphs contain some “wiggles” indicating that grid effects are not completely absent 
even though a modified VIC method is used. 

Although the ITS method does relatively well for A = 1.0, and the problem of 
cancellation of opposite strength vorticity does not occur for interfaces that roll up, 
a naive application to interfaces that roll up leads to failure. This is true even for 
low density differences where the advection terms should only be a small pertur- 
bation. This failure at amplitudes equal to one or two wavelengths is a common 
difficulty for other methods as well (see, e.g., the comment by Sharp [SO]). This 
author has also found the same behavior when running the front tracking code of 
Glimm et al. [21]. Only on very coarse grids can these calculations be continued 
for longer time; more accurate calculations break down earlier. 

The differences between the methods described here and their performances allow 
us to obtain some understanding of the problems encountered in the simulations of 
the Rayleigh-Taylor instability. For ,4 = 0.0 (the Boussinesq approximation) the 
a .s^ term vanishes identically and the vorticity generation equation has a rather 
simple form. In many ways this problem is similar to the “ordinary” vortex sheet 
problem and remedies that work there should work here also. This is indeed the 
case, and both vortex blob methods (Anderson [l]) and the VIC method can be 
successfully applied. The cure, as discussed before, is to replace the singular vortex 
sheet at each time-step with a slightly smoother vorticity distribution. This prevents 
a singularity from appearing but makes the exact form of the rolled-up vortex 
dependent on the smoothness parameter (the mesh size for the VIC method). 
Outside the vortex, the interface is relatively insensitive to this parameter. 

To treat the non-Boussinesq case (-4 #O) we have generated two methods, one 
that treats the advection terms as accurately as possible on the interface itself (the 
ITS method), and another that treats these terms in very much the same way as the 
vorticity and the velocities are treated in the VIC method, by smoothing the 
singular source terms onto a grid and thereby generating a grid acceleration field 
(the AP method). The reason for the difficulties in the ITS method appears to be 
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FIG. 10. Comparison of the large amplitude stage for both methods for moderate density differences 

(.4 = 0.5. the heavier fluid three times denser than the light fluid). The nondimensional time is 1.0: (al AP 
method and (b) ITS method. Explicit regularization of the vorticity advection term was used for the 
calculations in (b). The grid is 32 by 64 meshes in both cases, 

that it is not sufficient to use a smooth vorticity field to find the velocity. It is also 
necessary to regularize the vorticity generation terms. This is accomplished in the 
AP method by calculating the a .s^ term on the grid. In the ITS method the &J/tit 
term is calculated from the already smooth velocity field, but Zy’j8s is not 
regularized at all. If 7 is singular, or nearly so, obviously ?~*/L~s is likely to cause 
trouble. To account for this necessary, but missing, regularization in the ITS 
method we have explicitly regularized 7 at every time-step for use in the advection 
term in the vortex sheet equation (20). Many such regularizations are presumably 
possible; here we have simply used a running weighted average. Figure 10 shows 

FIG. 11. Large amplitude stage for various density ratios, and the same initial conditions as 
calculated by the ITS method. The grids are 32 by 128 meshes and the nondimensional time is 1.75 in all 
cases: (a) A = 0.0. (b j A = 0.5. (c) A = 0.8, and (dj A = 1.0. Explicit regularization of the vorticity advec- 
Lion term was used for the calculations in (b), but not in (c) and (d). 
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0 1.0 0 1.0 

FIG. 12. The vortex sheet strength versus arc length: (a) A =O, (b) A =0.6, and (c) A = 1. Notice 
that the scale for y in (a) and (b) is different from the scale in (c), and that the arc length is normalized 
by the total arc length. These calculations were done with the original four-point WC method and the 
grid is 32 by 64 meshes in all cases. The “wiggles” in the curve in (c) are numerical, but did not grow in 
time. 

the large amplitude configuration for A =0.5 on a 32 by 64 grid simulated by both 
methods, (a) AP method and (b j ITS method, using an explicit regularization for 1’ 
before we calculate i$‘/&. Not only are the results quite similar, but the solution 
calculated by the ITS method is also rather insensitive to the exact form and value 
of the regularization used. 

In Fig. 11 the difference in the configuration of the interface at large amplitudes 
for four different values of A is shown, as calculated by the ITS method. The grid is 
32 by 128 square meshes, and the frames correspond to approximately the same 
nondimensional time (t= 1.75). Figure lla is for .4 =O.O; (b), A =0.5; (c), A =0.8; 
and (d), A = 1.0. In 1 l(a) all the vorticity advection terms are identically zero. In 
It(b) smoothing (or regularization) is applied to y before dy2/& is calculated, but 
none is applied in (c) or (d). The -4 = 1 case (d) can be calculated to much larger 
amplitudes without any such smoothing. Indeed it is important not to smooth, 
since the structure is quite sensitive to this particular term. The thick spike tip (pen- 
dant drop) is a numerical artifact due to the grid. Similar distortion is also observed 
if a blob is used in calculations working directly with the BiottSavart integral. 



RAYLEIGH-TAYLOR INSTABILITY 277 

0 1.0 

FIGURE 12 (cominrred) 

Detailed numerical tests indicate that the solution in (b) is relatively insensitive to 
the amount of smoothing applied to obtain a regular solution as shown here; less 
smoothing will produce essentially the same solution but with a somewhat more 
‘“irregular” vortex region. For A = 0.8 case (c) this insensitivity was not observed, 
and no large range of the smoothing parameter was found for which the solution 
remained essentially unchanged. This may in part be due to the fact that the 
singularity forms much later in this case than for smaller density differences, and 
that smoothing may affect the evolution up to the singularity formation time too 
much. No particular difficulties are associated with simulations up to the time 
shown for A = 0.8, but numerical diffkulties show up shortly thereafter. Notice that 
even though the ~?$/ds term is not regularized, the inherent vortex blob 
regularization of the velocity field, due the grid, is still present. It is possible that a 
more selective smoothing, switched on at the time of the singularity formation and 
only applied where needed may produce better results. This possibility, as well as 
application of surface tension as a regularization mechanism, is under investigation 
(Surface tension has been used before (e.g., Pullin [40]). with mixed success, it is 
possible that some additional dissipation is needed.) 

To gain more insight into the behavior of the solution as the Attwood number 
(the density ratio) is increased, the vortex sheet strength 7 is plotted versus 
arclength in Fig. 12 for A = 0.0 (a), A = 0.6 (b j, and A = 1.0 (c). (These particular 
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simulations were done with the original VIC method.) Notice that the scale for y in 
(a) and (b) is different from the scale in (c) and that the arclength has been scaled 
by the total arclength in each case. The form of y(s) is very different for the two 
extreme density differences. For A = 0.0 the vortex sheet strength exhibits a very 
strong spike located at the vortex center. The height of this spike is dependent of 
the resolution, thus suggesting the existence of a singularity. This process of vor- 
ticity intensification is made the basis of a model of weakly stratified Rayleigh- 
Taylor flow in Aref and Tryggvason [4]. For A = 1.0 the maximum (and minimum) 
vortex sheet strength is much smaller (notice the different scales), and the maxima 
and minima are close together. The change from one to the other takes place in an 
abrupt, almost shock-like, manner. The “wiggles” in the profile are numerical, but 
did not grow in time. For calculations using the modified VIC method these 
“wiggles” are smaller. It is clear that if the spike for A = 1.0 does develop a 
singularity, then it must be of the form of a discontinuity in l(s), and hence, very 
different from the singularity for low values of A. For intermediate values of A, 
when roll-up still occurs, the spike in y(s) still forms, Fig. 12(b), but the distribution 
no longer has the same symmetries as for .4 = 0.0. It therefore appears that for 
A = 1.0, it is very important to account correctly for the advection of vorticity into 
the spike, and since no singularity appears to form, any desingularization may 
actually do damage since it usually involves some smoothing. The “shock” in y(s) 
for cl = 1.0 may also provide some clue as to why all methods encounter difliculties 
for nonsymmetric resolution of the spike, since any asymmetric resolution can 
generate large errors and instabilities. This numerical instability of unsymmetrically 
resolved spikes limits severely the calculations of general initial conditions in the 
single fluid case, even though no singularity appears to form. This problem at large 
amplitudes was also encountered by Baker, Meiron, and Orszag [6] and in 
simulations using the code of Glimm et al. [21]. It may also be mentioned that 
Sethian [48] has recently studied the propagation of a spike for a simplified set of 
model equations and encountered the same kind of difficulties. Only by resolving 
the spike exactly symmetrically could he follow the motion to large amplitude. 

For finite density ratios it appears to be important to regularize the problem, not 
only the equation for the velocity but also the equation for the acceleration. This is 
accomplished in the AP method, but has to be inserted explicitly when the decom- 
position (18) is used. We are faced with a somewhat contradictory task for high 
values of ,4 less than one. On the one hand we need to desingularize the problem to 
be able to simulate the roll-up, but on the other hand we have to advect the vor- 
ticity correctly downward, and to do so we do not want to smooth out the a .s^ 
term. In the ITS method it is therefore presumably necessary to reduce the 
regularization as A is increased. A systematic study of this has not been done, but a 
direct summation code extending vortex blob methods to stratified flows has 
recently been completed by the author. This type of grid-free method, although con- 
siderably more ineflicient than the present methods, offers a “cleaner” environment 
(no grid disturbances) to study such delicate questions as singularity formations 
and how to apply proper regularizations. 
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4. CONCLUSION 

The problems encountered in simulating the Rayleigh-Taylor instability for 
inviscid, incompressible fluids have been discussed here. For low density differences 
(say A d 0.6) we have presented methods that are both robust and fast. We have 
simulated general initial conditions and have not encountered any problems for as 
long as we have run our programs. It is of course difficult to assess the accuracy at 
large amplitudes, and for large values of A, care must be taken that the resolution is 
sufficiently high. In Fig. 13 we present examples of runs with three different initiai 
waves of random amplitude and phase. Figure 13(a) is for A =O.O (the Boussinesq 
approximation) and 13(b) is for A = 0.5. The grid is 32 by 64 meshes. At firs! each 
wave grows relatively independent of the others to amplitudes roughly half the per- 
tubation wavelength. Then the waves seem to interact strongly, and in the process: 
the largest wave develops into a dipole-like structure that may propagate out of the 

iii 

FIG. 13. The evolution of three waves of random amplitude and phase (on a 32 by 64 grid): 
(a) .1= 0.0 and (b) A = 0.5. The initial conditions are J.(X) = 0.125(0.7 cos 2rr.y + 0.5 sin 2x.x + 
0.3 cos 4x.y + 0.5 sin 4n.x + 0.1 cos 6x.x + 0.3 sin 6x.x). The box is of unit width and two units high. The 
times are: (i) 1.5. (ii) 2.0. (iii) 2.5. and (iv) 2.75. 
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FIG. 13. The interface at time 2.0 for the same initial conditions as in Fig. 13, but on a 63 by 
128 grid: (a) A =O.O and (b) A = 0.5 

main mixing zone. Notice that the interaction of the large amplitude vortices leads 
to an increase in “mean length scale” from three initial waves to one agglomeration 
of several vortices. Obviously, it is necessary to perform larger simulations to deter- 
mine to what extent the mixing is affected by the formation of dipole-like structures, 
what their fate is at large amplitude, and how the large amplitude interactions 
change the length scales in the mixed zone. Larger simulations should present no 
problems since these runs require only modest amounts of computer time. The 
prime limiting factor at the moment is the inconvenience associated with transfer- 
ring large amounts of data between sites. The last frame in Figs. 13(a) and (b) (and 
Fig. 14) contains several thousand points. Since these simulations use a rather 
coarse grid (corresponding to large vortex blobs) relatively little roll-up has taken 
place in the core of the vortices. Figure 14 shows the same initial conditions at 
t = 2.0 calculated on twice as fine a grid, where (a) is for A = 0.0 and (b) is for 
.4 =O.S. Although the interface configuration is not exactly identical to the 
corresponding frame in Fig. 13, close inspection reveals that the difference is mostly 
due to more roll-up in the vortices in Fig. 14. The instability on the coarse grid also 
evolves slightly slower than on the finer grid. The properties of the mixing due to a 
Rayleigh-Taylor instability will be discussed in detail in future publications. 
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